趋势洞察 3周前 146 阅读 0 评论

多机器人协作软硬一体化框架ReCA破解具身智能落地效率瓶颈

作者头像
AI中国

AI技术专栏作家 | 发布了 246 篇文章


从仓库里的物流机器人到科幻电影中的「贾维斯」,我们对智能机器人的想象从未停止。学术界在模拟器里实现了越来越复杂的协作任务,工业界也让机器人学会了韦伯斯特空翻。


然而,一个残酷的现实是:当下的机器「人」更像是提线木偶,而非真正自主的智能体。


想象一下,机器人每做一个动作都要延迟十几秒,完成同样的任务比人类慢上十倍,这样的效率如何走入我们的生活?这个从虚拟到现实的「最后一公里」,其瓶颈常常被忽视:高昂的时间延迟和低下的协作效率。它像一道无形的墙,将真正的具身智能困在了实验室里。



  • 论文标题: ReCA: Integrated Acceleration for Real-Time and Efficient Cooperative Embodied Autonomous Agents
  • 论文地址:https://dl.acm.org/doi/10.1145/3676641.3716016


为了打破这一僵局,来自佐治亚理工学院、明尼苏达大学和哈佛大学的研究团队将目光从单纯的「成功」转向了「成功且高效」。他们推出了名为 ReCA 的集成加速框架,针对多机协作具身系统,通过软硬件协同设计跨层次优化,旨在保证不影响任务成功率的前提下,提升实时性能和系统效率,为具身智能落地奠定基础。


简单来说:ReCA 不再满足于让智能体「完成」任务,而是要让它们「实时、高效地完成」任务。


这份工作发表于计算机体系结构领域的顶级会议 ASPLOS"25,是体系结构领域接收的首批具身智能计算论文,同时入选 Industry-Academia Partnership (IAP) Highlight。


三大瓶颈:

当前模块化具身智能的「效率之殇」


研究团队首先对当前的协同具身智能系统(如 COELA, COMBO, MindAgent)进行了系统性分析,定位了三大性能瓶颈:


高昂的规划与通信延迟: 系统严重依赖基于 LLM 的模块进行高阶规划和智能体间通信。每一步行动都可能涉及多次 LLM 的顺序调用,其中网络延迟和 API 调用成本更是雪上加霜,使得实时交互成为奢望。



有限的可扩展性: 随着智能体数量的增加,去中心化系统会面临通信轮次爆炸性增长和效率下降的问题;而中心化系统则由于单一规划者难以处理复杂的多智能体协同,导致任务成功率急剧下滑。



底层执行的敏感性: LLM 生成的高阶计划需要被精确翻译成底层的控制指令,底层执行的效率和鲁棒性直接关系到任务的成败。


ReCA 的「三板斧」:

从算法到系统再到硬件的跨层协同优化


针对上述挑战,ReCA 提出了一个贯穿算法、系统和硬件三个层面的跨层次协同设计框架,旨在提升协同具身智能系统的效率和可扩展性。



算法层面:更聪明的规划与执行


  • 本地化模型处理: 通过部署更小的、本地化的经过微调的开源 LLM,ReCA 摆脱了对外部 API 的依赖,消除了网络延迟瓶颈,同时保障了数据隐私。


  • 规划指导下的多步执行: 颠覆了传统「规划一步、执行一步」的模式。ReCA 让 LLM 一次性生成可指导连续多步底层动作的高阶计划,大幅减少了 LLM 的调用频率,显著降低了端到端延迟。



系统层面:更高效的记忆与协作


  • 双重记忆结构: 借鉴了人类认知的「双系统理论」,ReCA 设计了长短时记忆分离的结构。


    • 长期记忆以图结构存储环境布局等静态信息。
    • 短期记忆则动态刷新智能体状态、任务进度等实时信息。


有效解决了 LLM 在长任务中 prompt 过长导致「遗忘」关键信息的痛点,提升了规划的连贯性和准确性。



  • 分层协作规划: 为了解决扩展性难题,ReCA 引入了一种新颖的分层协作模式。在小范围的「簇」内,采用「父-子」智能体的中心化模式高效规划;在「簇」之间,则采用去中心化模式进行通信,更新彼此进度。这种混合模式兼顾了规划效率和系统规模。



硬件层面:更专业的加速单元


  • 异构硬件系统: ReCA 为高阶和低阶规划匹配了最合适的计算单元。它采用 GPU 子系统处理 LLM 的高阶规划,同时为精准路径规划等低阶任务设计了专门的硬件加速器。


  • 专用路径规划处理器: 研究表明,在系统优化后,原本占比不高的 A-star 路径规划延迟会成为新的瓶颈。ReCA 的专用 A-Star Processing Unit(APU)通过定制化的计算单元和访存设计,大幅提升了低阶规划的效率和能效。



效率提升:

5-10 倍速度提升,成功率不降反升


通过跨越六个基准测试和三大主流协同系统的评估,ReCA 展现了其强大的实力:


  • 效率: 在任务步骤仅增加 3.2% 的情况下,实现了平均 5-10 倍的端到端任务加速。原本需要近一小时的复杂任务,ReCA 能在 20 分钟内完成。



  • 成功率: 在大幅提升速度的同时,任务成功率平均还提升了 4.3%。这得益于其优化的记忆和协作机制,证明了效率与性能可以兼得。


  • 可扩展性: 即使在 12 个智能体的大规模协作场景下,ReCA 依然能保持 80-90% 的高成功率,而基线系统的成功率已跌至 70% 以下。



  • 能效: 其定制的 A-star 硬件加速器(APU)相较于 GPU 实现,取得了 4.6 倍的速度提升和 281 倍能效改进。


影响与未来


ReCA 的意义,远不止于一组性能提升的数据。它更像一块基石,为具身智能的未来发展铺设了三条关键路径


从「能用」到「好用」的跨越: 此前,研究的焦点大多是如何让机器人「成功」完成任务。ReCA 则明确地提出,「成功且高效」是更关键的目标。这项工作有助于推动领域的研究范式转变,让延迟、效率和可扩展性也成为衡量具身智能系统的核心指标,加速其在家庭服务、智能制造等场景的落地。


「软硬协同」释放效能提升: ReCA 通过算法、系统、硬件的跨层次协同优化,突破了过往「单点优化」的局限。未来的具身智能系统,有望像 ReCA 一样,在不同层面协同设计的产物。它为 GPU 处理高阶规划、硬件加速器处理底层精确任务的异构计算模式提供了范本,为下一代机器人「大脑」+「小脑」的设计提供了一种可行方案。


突破瓶颈,解锁想象力: 当延迟不再是瓶颈,我们可以大胆想象:一个机器人管家团队能在你下班前,实时协作,烹饪好一顿丰盛的晚餐,并打扫干净房间;又或者在灾难救援现场,多个机器人能实时共享信息,高效协同,在黄金救援时间内完成搜索与拯救任务。在自动化科学实验室里,机器人集群能够 7x24 小时不间断地进行复杂的协同实验,以前所未有的速度推动科学发现。


总而言之,ReCA 的工作不仅解决了一个关键的技术瓶颈,更是为具身智能从实验室走向真实世界,架起了一座坚实的桥梁。我们距离那个能实时响应、高效协作的「贾维斯」式智能助手,确实又近了一大步。


作者介绍


万梓燊 是佐治亚理工学院博士生,研究方向为计算机体系架构和集成电路,聚焦通过系统-架构-芯片的跨层软硬件协同设计,为具身智能机器人和神经符号 AI 构建高效、可靠的计算平台。个人主页
https://zishenwan.github.io/


杜宇航 是 Yang Zhao 教授和 Vijay Janapa Reddi 教授指导的本科研究员,研究方向为计算机体系架构和集成电路,致力于通过系统级的性能分析与协同设计,为智能体在真实世界的计算打造基础设施。


Mohamed Ibrahim 是佐治亚理工学院博士后研究员,研究方向为软硬件协同设计,融合类脑计算与 VLSI 系统,构建具备高适应性与高可靠性的创新硬件架构。


钱家熠 是佐治亚理工学院博士生,研究方向为高效机器学习算法与系统、计算机体系结构与硬件设计,聚焦面向具身智能与神经-符号系统的协同优化与加速。


Jason Jabbour 是哈佛大学计算机科学系博士生,研究方向为机器学习、机器人和自动驾驶。


Yang (Katie) Zhao 是明尼苏达大学电子与计算机工程系助理教授,研究方向聚焦于计算机体系架构、硬件设计与机器学习的交叉领域,致力于通过从算法、芯片到系统的全栈式协同设计,为大语言模型等新兴应用提供高效、可靠的硬件加速方案。


Tushar Krishna 是佐治亚理工学院电子与计算机工程学院副教授,入选 ISCA、HPCA 和 MICRO 名人堂。长期致力于计算机体系架构、NOC 与 AI/ML 加速器等领域的研究,相关成果被引用超过 20000 次。曾有多篇论文入选 IEEE Micro 最佳论文推荐(Top Picks)或荣获最佳论文奖,现任 ML Commons Chakra 工作组联合主席。


Arijit Raychowdhury 是佐治亚理工学院电子与计算机工程学院院长,IEEE Fellow。长期致力于低功耗数字与混合信号电路、专用加速器设计等领域的研究,在国际顶级期刊与会议发表论文 250 余篇,拥有超过 27 项美国及国际专利。担任 ISSCC、VLSI、DAC 等多个顶级会议的技术委员会委员。


Vijay Janapa Reddi 是哈佛大学工程与应用科学学院教授,入选 MICRO 与 HPCA 名人堂。长期致力于计算机体系架构、机器学习系统与自主智能体的交叉领域研究,是 TinyML 领域的开拓者之一,并联合领导创建了 MLPerf。曾获 MICRO、HPCA 最佳论文奖及多次入选 IEEE Micro 最佳论文,现任 MLCommons 董事会成员和联合主席。

作者头像

AI前线

专注人工智能前沿技术报道,深入解析AI发展趋势与应用场景

246篇文章 1.2M阅读 56.3k粉丝

评论 (128)

用户头像

AI爱好者

2小时前

这个更新太令人期待了!视频分析功能将极大扩展AI的应用场景,特别是在教育和内容创作领域。

用户头像

开发者小明

昨天

有没有人测试过新的API响应速度?我们正在开发一个实时视频分析应用,非常关注性能表现。

作者头像

AI前线 作者

12小时前

我们测试的平均响应时间在300ms左右,比上一代快了很多,适合实时应用场景。

用户头像

科技观察家

3天前

GPT-4的视频处理能力已经接近专业级水平,这可能会对内容审核、视频编辑等行业产生颠覆性影响。期待看到更多创新应用!